%0 Journal Article %T Modeling and Implementation of a Power Estimation Methodology for SystemC %A Matthias Kuehnle %A Andre Wagner %A Alisson V. Brito %A Juergen Becker %J International Journal of Reconfigurable Computing %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/439727 %X This work describes a methodology to model power consumption of logic modules. A detailed mathematical model is presented and incorporated in a tool for translation of models written in VHDL to SystemC. The functionality for implicit power monitoring and estimation is inserted at module translation. The translation further implements an approach to wrap RTL to TLM interfaces so that the translated module can be connected to a system-level simulator. The power analysis is based on a statistical model of the underlying HW structure and an analysis of input data. The flexibility of the C++ syntax is exploited, to integrate the power evaluation technique. The accuracy and speed-up of the approach are illustrated and compared to a conventional power analysis flow using PPR simulation, based on Xilinx technology. 1. Introduction The need for more abstract system on chip development techniques is evident due to rising system complexity. Consequently, accurate system evaluation in less time will increase the productivity. According to the Semiconductor roadmap, especially the consideration of energy consumption is becoming more important and is also a limiting factor for many applications [1, 2]. Modeling strategies are driven by system and software engineers on the one hand and hardware engineers on the other hand. The first group develops RTL models written in hardware description languages (HDLs) since they are the basis for synthesis tools. The second group uses transaction level models (TLMS), most commonly written in SystemC [3] since these models enable fast system simulation. SystemC is a library based on the object-oriented programming language C++. A TLM specification extends SystemC to separate communication from computation. TLM improves modeling and simulation speed. The simulation speed depends on the level of abstraction [4]. Also, modeling at different abstraction levels is possible. This increases the flexibility of SystemC. A remaining problem is the trade-off between accuracy and simulation speed and with that, the link and synchronization between the two layers. Translation tools are solving this problem to some extent. They inherit some limitations in the translation of syntax constructs that do not have direct counterparts. The presented tool extends this feature list. The main goal of this work, however, is the integration of a power analysis methodology into the translation process. The power estimation methodology estimates switching activities in DSP units such as adders or multipliers according to actual input data. The approach is %U http://www.hindawi.com/journals/ijrc/2012/439727/