%0 Journal Article %T 基于LMD与奇异值差分谱的滚动轴承故障诊断方法 %J 北京工业大学学报 %D 2014 %X 针对滚动轴承故障振动信号的非线性非平稳特性及强噪声特性,提出了一种基于局部均值分解(localmeandecomposition,LMD)和奇异值差分谱的滚动轴承故障诊断方法.首先对原始信号进行LMD分解,得到若干乘积函数(productfunction,PF)分量,然后对故障特征明显的分量构建Hankel矩阵并进行奇异值分解,求出奇异值差分谱曲线,找到奇异值差分谱最大突变点来确定奇异值重构分量的个数,进而对包含故障特征频段的分量进行消噪和重构,再对重构信号进行Hilbert包络谱分析,提取故障特征.实验结果和工程应用表明:LMD和奇异值差分谱结合的信号特征提取方法,能准确、有效地提取滚动轴承的故障特征频率,对故障类型作出准确判断. %K 局部均值分解 %K 奇异值差分谱 %K 故障诊断 %U http://www.bjgd.cbpt.cnki.net/WKA/WebPublication/paperDigest.aspx?paperID=5c4d2d3b-fdb0-4230-bfbc-b57695f345c3