%0 Journal Article %T FPGA Implementation of a Pipelined Gaussian Calculation for HMM-Based Large Vocabulary Speech Recognition %A Richard Veitch %A Louis-Marie Aubert %A Roger Woods %A Scott Fischaber %J International Journal of Reconfigurable Computing %D 2011 %I Hindawi Publishing Corporation %R 10.1155/2011/697080 %X A scalable large vocabulary, speaker independent speech recognition system is being developed using Hidden Markov Models (HMMs) for acoustic modeling and a Weighted Finite State Transducer (WFST) to compile sentence, word, and phoneme models. The system comprises a software backend search and an FPGA-based Gaussian calculation which are covered here. In this paper, we present an efficient pipelined design implemented both as an embedded peripheral and as a scalable, parallel hardware accelerator. Both architectures have been implemented on an Alpha Data XRC-5T1, reconfigurable computer housing a Virtex 5 SX95T FPGA. The core has been tested and is capable of calculating a full set of Gaussian results from 3825 acoustic models in 9.03 ms which coupled with a backend search of 5000 words has provided an accuracy of over 80%. Parallel implementations have been designed with up to 32 cores and have been successfully implemented with a clock frequency of 133£¿MHz. 1. Introduction Automated Speech Recognition (ASR) systems can revolutionize the way that we interact with technology. Large vocabulary speaker independent systems have potential in all forms of computing, from hand held mobile devices to personal computing and even large scale data centres. A low power, real-time embedded system could dramatically impact our daily interactions with digital mobile technology [1] while a faster than real-time multi-stream batch decoder could be used in server applications for distributed systems [2] or data-mining [3, 4]. There are a range of open source software ASR systems available [5, 6]. These tools employ Hidden Markov Models and Viterbi decoding to provide a speech decoder that can be configured for a variety of implementations. Over the last 5 years, however, the research concerning high performance ASR has been more focused on hardware implementations and as such, many FPGA-based speech recognition systems have been implemented, although systems have generally been limited by small vocabulary [7, 8] or have relied on custom hardware to provide the necessary resources required for a large vocabulary system [9]. The approach of pairing a softcore processor with a custom IP peripheral is popular and has been proposed in a number of papers [8, 10] but a system operating on large vocabularies at real-time is yet to be demonstrated. This is, in part, due to the low operating frequencies of softcore processors but another problem is the interfacing with off-chip, high capacity RAM which can introduce large delays that cripple a high bandwidth system like speech %U http://www.hindawi.com/journals/ijrc/2011/697080/