%0 Journal Article %T 基于回归神经网络的大跨度结构风压场预测 %A 孙芳锦 %A 梁爽 %A 张大明 %J 地震工程与工程振动 %P 180-187 %D 2014 %R 10.13197/j.eeev.2014.05.180.sunfj.023 %X 为提高计算效率并降低存储耗时,提出一种局部回归神经网络方法用来预测大跨度结构风压场。将原有整体优化问题分解为神经元层的子问题进行处理,基于在线学习方法中的递归预报误差法对局部回归神经网络进行训练。首先给出了整体递归预报误差算法,对所有可调权进行同步处理,然后将整体优化问题分解为子问题推导出局部回归神经网络,在更新递归过程中使用二阶信息。将该方法应用于大跨度屋盖的风压预测中,并将计算结果与传统神经网络计算结果进行了比较。结果表明,本文方法的计算误差小,收敛速度快,达到了提高计算效率和降低存储耗时的目的。提出的局部回归神经网络方法为大跨度结构风压场的预测提供了准确高效的方法。 %K 回归神经网络 %K 在线学习 %K 递归预报误差法 %K 大跨度结构 %K 风压场 %U http://dzgc.iemzzs.com/oa/darticle.aspx?type=view&id=20140523