%0 Journal Article %T E-learning评论文本的情感分类研究 %A 潘怡 %A 叶辉 %A 邹军华 %J 开放教育研究 %D 2014 %X 自本世纪初起,E-learning作为一种灵活、丰富、高效的学习方式,被越来越多的学习者接受,而伴随着学习技术的逐步成熟,学习者对E-Learning应用的要求也从最初的知识推送提升到能够在讲授者与学习者之间搭建有效的沟通桥梁,将零反馈的封闭式学习变成多反馈的协作学习。E-learning的评论信息隐含了学习者在学习中遇到的问题和建议,从中可挖掘学习者对学习资源及授课者的意见。这对改善教学模式、完善教学支持服务意义重要。现有E-learning系统所提供的海量评论信息中正面评论与负面评论夹杂,给挖掘学习者的真实意见和需求带来困难。本文对文本情感分类过程进行归纳,构建了一种情感分类应用模型,在完成预处理、创建词典、提取情感特征后实现了一个情感分类引擎,并将该引擎与实际系统整合。改进后的系统能够将学习者的评论文本自动分为正面评论、负面评论和中性评论,实际性能及用户体验评价结果表明,新的基于情感单元的情感分类方法能满足E-learning评论文本的情感分类需求。 %K E-learning %K 评论文本 %K 情感分类 %K 情感单元 %U http://openedu.shtvu.org.cn/frontsite/series_details.asp?id=1626