%0 Journal Article %T The Use of Split-Thickness Skin Grafts on Diabetic Foot Ulcerations: A Literature Review %A Brant McCartan %A Thanh Dinh %J Plastic Surgery International %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/715273 %X Diabetic foot ulcerations are historically difficult to treat despite advanced therapeutic modalities. There are numerous modalities described in the literature ranging from noninvasive topical wound care to more invasive surgical procedures such as primary closure, skin flaps, and skin grafting. While skin grafting provides faster time to closure with a single treatment compared to traditional topical wound treatments, the potential risks of donor site morbidity and poor wound healing unique to the diabetic state have been cited as a contraindication to its widespread use. In order to garner clarity on this issue, a literature review was undertaken on the use of split-thickness skin grafts on diabetic foot ulcers. Search of electronic databases yielded four studies that reported split-thickness skin grafts as definitive means of closure. In addition, several other studies employed split-thickness skin grafts as an adjunct to a treatment that was only partially successful or used to fill in the donor site of another plastic surgery technique. When used as the primary closure on optimized diabetic foot ulcerations, split-thickness skin grafts are 78% successful at closing 90% of the wound by eight weeks. 1. Introduction There are many means of treating diabetic ulcerations. A conservative approach may entail regular debridement and dressing changes. Topical solutions such as saline, iodine, antimicrobial absorbent fiber sheets, and collagenase ointments may be included. For wounds with macerated edges it may be adventitious to apply gauze with diluted iodine to prevent further maceration. In hyperkeratotic, fibrotic, or dry necrotic tissue borders, it is preferred to apply hydrogels to hydrate the surrounding area. It is important to debride fibrotic wounds. This can be done mechanically by applying saline wet to dry dressings, and then after the dressing is changed, it removes fibrotic tissue with it. Some institutions employ the use of negative pressure wound therapy (NPWT) to stimulate granulation tissue and help remove fibrotic tissue formation [1]. Also, NPWT is good for draining wounds, along with calcium alginates which help absorption. Collagenases can be used to chemically debride wounds, and sharp debridement is a time tested method to remove non-viable tissue. There are also several bioengineered products that may facilitate wound closure once the wound is infection-free and has a primarily granular base. These materials help deliver fibroblasts to wounds and help serve as a scaffold for new tissue growth. Sometimes chronic wounds remain or %U http://www.hindawi.com/journals/psi/2012/715273/