%0 Journal Article %T 基于提升小波变换的医学图像融合 %A 李俊峰 %A 姜晓丽 %A 戴文战 %J 中国图象图形学报 %D 2014 %R 10.11834/jig.20141112 %X 目的将不同模态的医学图像(如CT/MRI图像)进行科学融合,可以有效地丰富图像的信息,提高信息的利用效能,这对于医学临床诊断具有重要的理论研究意义和应用价值。方法基于提升小波变换的特性,对多模态医学图像的融合算法进行研究。首先,对已配准的源图像进行多尺度分解,得到低频子带和多层高频子带;进而,根据低频子带的特点和各层高频子带的噪声含量不同,提出了低频子带系数采用基于区域平均能量的加权融合规则;对噪声含量较低的低层高频子带采用基于计盒分维法获取分维数,而对噪声含量较高的高层高频子带提出了基于区域梯度能量加权融合规则。结果分别对灰度图像和彩色图像进行了大量融合实验,并分别在主观视觉特性及客观评价指标下对不同融合算法产生的融合图像的质量进行了分析对比,表明本文算法具有较好的边缘保持度。结论实验结果表明,较现有算法产生的融合图像,应用本文融合算法得到的图像具有更丰富的信息,更能使图像灰度级分散,具有更良好的视觉特性和评价指标。 %K 医学图像融合 %K 提升小波变换 %K 区域能量 %K 计盒维数 %K 局部区域梯度能量 %U http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20141112&flag=1