%0 Journal Article %T 融合残差Unscented粒子滤波和区别性稀疏表示的鲁棒目标跟踪 %A 杨彪 %A 林国余 %A 张为公 %A 路小波 %A 张宇歆 %J 中国图象图形学报 %D 2014 %R 10.11834/jig.20140511 %X 目的提出一种鲁棒的目标跟踪算法,将区别性稀疏表示模型应用于残差Unscented粒子滤波(RUPF)跟踪框架,从而实现对目标高效准确的跟踪。方法利用Unscented卡尔曼(UKF)滤波技术将目标的量测信息引入提议分布,并使用马尔可夫蒙特卡洛(MCMC)移动改进采样结果,提高了滤波的精度,同时有效防止了粒子的退化和贫化。基于稀疏表示建立区别性的目标观测模型,引入的背景成分可以增强算法分辨目标与背景的能力。采用可变方向乘子法(ADMM)解决稀疏表示中的L1优化问题,有效地提升了算法的执行效率。结果通过和其他跟踪算法一起,对标准测试视频进行的大量定性与定量的实验,结果表明,本文跟踪算法的跟踪精度高于一些常见的跟踪算法,同时其时间复杂度低于传统的几种基于稀疏的跟踪算法。结论随着硬件技术的不断发展,UKF滤波技术的速度不断提升,保证了本文算法可以在较高准确率下有更快的执行速度。 %K 目标跟踪 %K Unscented粒子滤波 %K 稀疏表示 %K 动态模板更新 %K 可变方向乘子法(ADMM) %U http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20140511&flag=1