%0 Journal Article %T 具有适应性突变和惯性权重的粒子群优化(PSO)算法及其在动态系统参数估计中的应用 %A ALFI %A Alireza %J 自动化学报 %P 541-549 %D 2011 %R 10.3724/SP.J.1004.2011.00541 %X ?Animportantprobleminengineeringistheunknownparametersestimationinnonlinearsystems.Inthispaper,anoveladaptiveparticleswarmoptimization(APSO)methodisproposedtosolvethisproblem.Thisworkconsiderstwonewaspects,namelyanadaptivemutationmechanismandadynamicinertiaweightintotheconventionalparticleswarmoptimization(PSO)method.Thesemechanismsareemployedtoenhanceglobalsearchabilityandtoincreaseaccuracy.First,threewell-knownbenchmarkfunctionsnamelyGriewank,RosenbrockandRastrigrinareutilizedtotesttheabilityofasearchalgorithmforidentifyingtheglobaloptimum.TheperformanceoftheproposedAPSOiscomparedwithadvancedalgorithmssuchasanonlinearlydecreasingweightPSO(NDWPSO)andareal-codedgeneticalgorithm(GA),intermsofparameteraccuracyandconvergencespeed.ItisconfirmedthattheproposedAPSOismoresuccessfulthanotheraforementionedalgorithms.Finally,thefeasibilityofthisalgorithmisdemonstratedthroughestimatingtheparametersoftwokindsofhighlynonlinearsystemsasthecasestudies. %K Particleswarmoptimization(PSO) %K parameterestimation %K nonlineardynamics %K inertiaweight %K adaptivemutation %U http://www.aas.net.cn/CN/abstract/abstract17479.shtml