%0 Journal Article %T 关于二维主成分分析方法的研究 %A 王立威 %A 王潇 %A 常明 %A 封举富 %J 自动化学报 %P 782-787 %D 2005 %X ?Theprincipalcomponentanalysis(PCA),ortheeigenfacesmethod,isadefactostandardinhumanfacerecognition.NumerousalgorithmstriedtogeneralizePCAindifferentaspects.Morerecently,atechniquecalledtwo-dimensionalPCA(2DPCA)wasproposedtocutthecomputationalcostofthestandardPCA.UnlikePCAthattreatsimagesasvectors,2DPCAviewsanimageasamatrix.Withaproperlydefinedcriterion,2DPCAresultsinaneigenvalueproblemwhichhasamuchlowerdimensionalitythanthatofPCA.Inthispaper,weshowthat2DPCAisequivalenttoaspecialcaseofanexistingfeatureextractionmethod,i.e.,theblock-basedPCA.UsingtheFERETdatabase,extensiveexperimentalresultsdemonstratethatblock-basedPCAoutperformsPCAondatasetsthatconsistofrelativelysimpleimagesforrecognition,whilePCAismorerobustthan2DPCAinhardersituations. %K Facerecognition %K PCA %K two-dimensionalPCA %K block-basedPCA %U http://www.aas.net.cn/CN/abstract/abstract15955.shtml