%0 Journal Article %T ECG信号自动诊断中回归建模法特征提取的研究 %A 葛丁飞 %J 自动化学报 %P 462-466 %D 2007 %R 10.1360/aas-007-0462 %X ?Thisarticleexplorestheabilityofmultivariateautoregressivemodel(MAR)andscalarARmodeltoextractthefeaturesfromtwo-leadelectrocardiogramsignalsinordertoclassifycertaincardiacarrhythmias.TheclassificationperformanceoffourdifferentECGfeaturesetsbasedonthemodelcoefficientsareshown.Thedataintheanalysisincludingnormalsinusrhythm,atriaprematurecontraction,prematureventricularcontraction,ventriculartachycardia,ventricularfibrillationandsuperventriculartachycardiaisobtainedfromtheMIT-BIHdatabase.Theclassificationisperformedusingaquadraticdiscriminantfunction.TheresultsshowtheMARcoefficientsproducethebestresultsamongthefourECGrepresentationsandtheMARmodelingisausefulclassificationanddiagnosistool. %K Autoregressivemodel %K ECGfeatures %K classification %K automaticdiagnosis %U http://www.aas.net.cn/CN/abstract/abstract14291.shtml