%0 Journal Article %T 先验知识与基于核函数的回归方法的融合 %A 孙喆 %A 张曾科 %A 王焕钢 %J 自动化学报 %P 1515-1521 %D 2008 %R 10.3724/SP.J.1004.2008.01515 %X ?Insomesamplebasedregressiontasks,theobservedsamplesarequitefewornotinformativeenough.Asaresult,theconflictbetweenthenumberofsamplesandthemodelcomplexityemerges,andtheregressionmethodwillconfrontthedilemmawhethertochooseacomplexmodelornot.Incorporatingthepriorknowledgeisapotentialsolutionforthisdilemma.Inthispaper,asortofthepriorknowledgeisinvestigatedandanovelmethodtoincorporateitintothekernelbasedregressionschemeisproposed.Theproposedpriorknowledgebasedkernelregression(PKBKR)methodincludestwosubproblems:representingthepriorknowledgeinthefunctionspace,andcombiningthisrepresentationandthetrainingsamplestoobtaintheregressionfunction.Agreedyalgorithmfortherepresentingstepandaweightedlossfunctionfortheincorporationstepareproposed.Finally,experimentsareperformedtovalidatetheproposedPKBKRmethod,whereintheresultsshowthattheproposedmethodcanachieverelativelyhighregressionperformancewithappropriatemodelcomplexity,especiallywhenthenumberofsamplesissmallortheobservationnoiseislarge. %K Machinelearning %K priorknowledge %K kernelbasedregression %K iterativegreedyalgorithm %K weightedlossfunction %U http://www.aas.net.cn/CN/abstract/abstract18030.shtml