%0 Journal Article %T 多标签分类法在电能质量复合扰动分类中的应用 %A 周雒维 %A 管春 %A 卢伟国 %J 中国电机工程学报 %P 45-50 %D 2011 %X 提出一种基于多标签分类的电能质量复合扰动分类新方法。在k–近邻(k-nearestneighbor,KNN)和贝叶斯准则(Bayesianrule)的基础上,提出多标签分类排位分类算法k–近邻贝叶斯多标签分类法(k-nearestneighborBayesianrule,KNN-Bayesian)。首先对常见的电能质量扰动及其组合而成的复合扰动进行离散小波分解,提取各层分解系数的规范能量熵作为特征向量;然后,利用KNN-Bayesian进行分类识别。仿真实验结果表明,在不同的噪声条件下KNN-Bayesian可有效分类识别电压暂降、电压暂升、电压短时中断、脉冲暂态、谐波和闪变等电能质量扰动及其组合而成的复合扰动。 %K 电能质量复合扰动 %K 多标签分类 %K k–近邻 %K 小波变换 %K 贝叶斯准则 %U http://www.pcsee.org/CN/abstract/abstract24096.shtml