%0 Journal Article %T 亲体量和环境对东海小黄鱼补充成功率的影响 %A 刘尊雷 %A 袁兴伟 %A 杨林林 %A 严利平 %A 张辉 %A 程家骅 %A ** %J 应用生态学报 %P 588-600 %D 2015 %X 补充成功率通常可用多个假说机制进行解释,模型选择方法通过选择最优模型而支持某种特定假说.然而,由于忽略模型不确定性,将单一模型结果应用到衰退种类的资源管理或许并不是行之有效的方案.本研究利用1992—2012年东海区海洋渔业统计、渔业资源监测和渔业资源同步调查获得的小黄鱼亲体量丰度、补充量丰度资料,以及同年东海北部5—8月海表温度(sst)、经向风应力(mws)、纬向风应力(zws)、海平面气压(ssp)和长江径流量(rcr)等水文环境数据,采用aic、最大校正r2和变量显著性3种独立的模型选择方法对竞争模型进行优化,根据模型选择结果探寻影响小黄鱼补充成功率的显著因素.同时,采用贝叶斯模型平均(bma)方法,在模型不确定性假设背景下对多种变量进行了概率集成.选取平均绝对误差、均方预测误差和连续排序概率评分3种概率检验方法评估贝叶斯模型平均方法和标准模型选择方法的预报系统的整体性能.结果表明:3种模型选择方法获得的模型形式并不一致,aic选择的预测变量有亲体量和经向风应力,变量显著性方法为亲体量,最大校正r2为亲体量、经向风应力和长江径流量.亲体量与补充成功率为显著负线性关系(p<0.01),表明种群可能通过自相蚕食、饵料竞争等过度补偿效应控制补充成功率;经向风应力强度和长江径流分别对补充成功率有近似显著的正效应(p=0.06)和负效应影响(p=0.07).在平均绝对误差和连续排序概率评分分析指标中,贝叶斯模型平均方法均最小,变量显著性方法最大,最大校正r2模型在均方预测误差中估计精度最高.基于贝叶斯模型平均的亲体补充量集成预报不仅可以提供精度较高的预报均值,而且可以通过概率分布定量评价模型预报的不确定性. %K 小黄鱼 %K 贝叶斯模型平均 %K 模型选择 %K 补充成功率 %U http://www.cjae.net/CN/abstract/abstract19937.shtml