%0 Journal Article %T 定常奇异摄动系统的概周期解 %A 黄元石 %J 福州大学学报(自然科学版) %D 1983 %X 本文考虑定常的奇异摄动系统(1.1)dx/dt=f(x,y,ε),εdy/dt=g(x,y,ε)及其退化 系统(1.2)dx/dt=f(x,y,0),0=g(x,y,0).假设系统(1.2)有一个非常数的概周期解(1.3) x=u(t),u=V(t).当系统(1.2)关于(1.3)的第一变分方程系恰具有一个广义零特征指 数时,我们在适当的条件下证明了对充分小的ε,系统(1.1)有唯一的概周期解x=x(t,ε), y=y(t,ε)使得当ε→o时,对一切t有||x(t,ε)-u(t)||+||y(t,ε)-v(t)||→0。 在证明中,我们首先推广了法坐标变换,进而建立指数型二分法,然后把问题化为非定常系统的 相应问题,从而利用K.W.Chang[5]的结果加以解决. %U http://xbzrb.fzu.edu.cn/ch/reader/view_abstract.aspx?file_no=19830339&flag=1