%0 Journal Article %T 一类二维分数阶偏微分方程解的适定性<br>Well-posedness of the 2D-fractional partial differential equations %A 苏延辉 %J 福州大学学报(自然科学版) %D 2015 %R 10.7631/issn.1000-2243.2015.04.0435 %X 研究一类二维分数阶偏微分方程的边值问题,主要包括两方面内容:一是研究了合适的分数阶Sobolev 空间及分数阶算子的性质;二是发展了一个弱解的理论框架,并建立了弱解的适定性理论. 这是构造数值方法(如有限元和谱方法等)求解二维分数阶偏微分方程的理论基础.<br>We investigate the boundary value problem of two-dimensional fractional partial differential equations (FEPDEs). The main contributions of this work are twofold:first,we investigate suitable fractional Sobolev spaces for fractional partial differential equations and study the properties of the fractional operator. Then,we develop a theoretical framework of weak solutions and establish the well-posedness of the weak solutions. Consequently,this work provides the theory for constructing numerical method such as finite element method and spectral method for solving the fractional partial differential equations %K 分数阶导数 弱解 变分形式 适定性< %K br> %K fractional derivative weak solution variation formulation well-posedness %U http://xbzrb.fzu.edu.cn/ch/reader/view_abstract.aspx?file_no=20150401&flag=1