%0 Journal Article %T 实半单Lie群的正交实表示 %A 梁科 %J 科学通报 %P 400-400 %D 1993 %X 严志达与张大干在文献[1]中,给出了实半单Lie群的有限维实表示的分类。本文将利用Vogan在文献[2]中提出的最低K型的概念,讨论实半单Lie群的正交表示设G为实半单连通Lie群,K为G的极大紧子群,分别为它们的Lie代数。V是一个实Hilbert空间。πG→End(V)为一个同态。且π(g)v(g∈G,v∈V)为G×V到矿V的连续映射,则称(V,π)为G的一个实Hilbert表示。若π(g)同时又是正交算子(保持内积不变),则(V,π)称为G的正交(实)表示。若V中没有π(G)的非平凡不变闭子空间,则称(V,π)不可约。以下恒假定(V,π)为G的不可约正交表示。记(V~c,π)为(V,π)的复化。 %K Lie %K 群 %K 正交表示 %K 酉表示 %U http://csb.scichina.com:8080/CN/abstract/abstract362406.shtml