%0 Journal Article %T Oxidative Carbonylation of 2-Propyn-1-ol and 2-Methyl-3-butyn-2-ol in an Oscillatory Mode %A Sergey Nikolaevich Gorodsky %J Organic Chemistry International %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/819190 %X The oscillatory modes of oxidative carbonylation reaction of two new substrates¡ª2-methyl-3-butyn-2-ol and 2-propyn-1-ol in homogeneous system PdI2-KI-CO-O2-CH3OH are found. Borders of oscillatory areas are drawn, the basic products of reaction are identified, and probable processes routes are offered. 1. Introduction The phenomenon of intermediates concentration oscillations is found already in several tens of homogeneous [1] and heterogeneous [2] chemical systems. The most interesting thing, in our opinion, is the oscillations occurring in homogeneous catalysis conditions. They are evolving out of intermediates complex interactions, which are formed during process. So this type of oscillations has a chemical nature only. Influence of diffusion, processes of mass and heat exchange, certainly, can be observed in these systems, but these processes, to all appearance, are not responsible for an occurrence of concentration oscillations in the homogeneous systems. We were lucky to find out oscillatory modes of oxidative carbonylation reactions of two new alkynes: 2-methyl-3-butyn-2-ol (MB) and 2-propyn-1-ol (P). As far as we know it is the first mention of oscillatory process with participation of oxygen containing alkynes in metal complexes catalysis conditions. In early works we investigated the oscillations in palladium halogenide solutions in reactions of alkynes oxidative carbonylation [3¨C11]. These are examples of reactions in which complex products¡ªcarboxylic acids and their derivatives¡ªare synthesized from simple substances-H2O, CH3OH, CO, and so on. The carbonylation reactions are interesting with relation to important products of organic synthesis obtaining 2-methyl-3-butyn-2-ol is that used as semiproduct in synthesis of fragrance compounds, medical products, and vitamins, applied as anticorrosive means to protection of the petroleum equipment, the modifier of motor fuels, emulgators. MB is an interesting research object. On the one hand, it has triple bond in the molecule, and so it can participate in reactions of hydrogenation, halogenations and other addition processes on the triple bond. It is active also in reactions of oligomerization and polymerization, and owing to presence of hydroxyl groups MB is the participant of reactions that are characteristic for alcohols generally, and for tertiary alcohols particularly. Finally, MB participates in reactions of carbonylation as any unsaturated reactant. MB reacts in butanol with nickel carbonyl in the presence of HCl even at room temperature and gives as main product butylic ether of %U http://www.hindawi.com/journals/oci/2012/819190/