%0 Journal Article %T 基于大涡模拟的平流层浮空器气动特性分析<br>Analysis of stratospheric lighter-than-air vehicle's aerodynamic characteristics based on large eddy simulation %A 王裕夫 %A 陶国权 %A 刘东旭 %A 武哲 %J 北京航空航天大学学报 %D 2015 %R 10.13700/j.bh.1001-5965.2014.0535 %X 摘要 为研究不同球体间距对“球形囊体型”平流层浮空器(SLV)气动特性的影响,采用有限体格式、结构网格和大涡模拟(LES)计算方法求解不可压缩的Navier-Stokes(N-S)方程,对超临界雷诺数“球形囊体型”平流层浮空器绕流进行数值模拟,并对不同球体间距下的数值计算结果进行详细的分析比较.通过对比试验数据,单球体数值模拟的阻力系数时均值与Achenbach的试验数据一致,验证了计算方法分析超临界雷诺数球体绕流问题的准确性.研究不同间距的双球体阻力变化规律以及振动频谱特性,随上下游球体间距G的增加,合阻力先增大后减小,上游球体的阻力占优振动频率逐渐减小;G=1.5D(D为球体直径)和G=2D时,上下游球体有相同的占优振动频率.随间距G的增加,两球体相互作用与上游球体对下游球体的尾涡结构影响逐渐减弱.<br>Abstract: Flowing over stratospheric lighter-than-air vehicle (SLV) with spherical capsule shape at supercritical Reynolds number were simulated by using large eddy simulation (LES) method. Meanwhile, the results at different sphere spacing were analyzed and compared so that the influence of different sphere spacing on stratospheric lighter-than-air vehicle's aerodynamic characteristics was obtained. Compared with the results of the experiments, the calculations of time-average drag coefficients agreed well with Achenbach's experimental results in the single sphere. The method was verified accurate on the analysis of flow over spheres at supercritical Reynolds number. The drag coefficients of the two spheres at different sphere spacing and frequency spectrum were studied. With the increase of the upstream and downstream spheres' spacing, the whole drags increased first, then decreased, and the the dominant frequencies of G=1.5D and G=2D. With the increasing of G, the interaction between the two spheres and the influence of upstream sphere's trailing vortex to downstream sphere's trailing vortex waned. %K 平流层浮空器 %K 大涡模拟 %K 球体绕流 %K 阻力系数 %K 频谱特征< %K br> %K stratospheric lighter-than-air vehicle %K large eddy simulation %K flow over spheres %K drag coefficient %K frequency spectrum %U http://bhxb.buaa.edu.cn/CN/abstract/abstract13211.shtml