%0 Journal Article %T 基于泄漏积分型回声状态网络的软测量动态建模方法及应用 %A 李军 %A 岳文琦 %J 化工学报 %P 4004-4014 %D 2014 %R 10.3969/j.issn.0438-1157.2014.10.034 %X 提出一种基于泄漏积分型回声状态网络(LiESN)的软测量动态建模方法,给出LiESN的岭回归离线学习算法与递推最小二乘(RLS)在线学习算法。通过引入正则化系数,岭回归离线学习算法可有效地控制输出权值的幅值,改善ESN的预测性能。RLS在线学习算法能适应大数据集的处理,满足过程建模实时性的需求。将基于LiESN的软测量方法分别用于预测脱丁烷塔底部丁烷组分的含量及计算硫回收装置中尾气的组成,实现对精炼厂相关产品质量的实时监控,并采用模型残差的四图分析对建模性能进行评价。在同等条件下,与基本的ESN网络以及支持向量机(SVM)等软测量建模方法进行了比较,结果表明,所提出的LiESN方法取得了很好的预测性能,计算精度满足工业生产的实际要求。 %K 回声状态网络 %K 软测量 %K 动态建模 %K 预测 %K 算法 %K 化工过程 %U http://www.hgxb.com.cn/CN/abstract/abstract16301.shtml