%0 Journal Article %T Subwavelength Plasmonic Waveguides and Plasmonic Materials %A Ruoxi Yang %A Zhaolin Lu %J International Journal of Optics %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/258013 %X With the fast development of microfabrication technology and advanced computational tools, nanophotonics has been widely studied for high-speed data transmission, sensitive optical detection, manipulation of ultrasmall objects, and visualization of nanoscale patterns. As an important branch of nanophotonics, plasmonics has enabled light-matter interactions at a deep subwavelength length scale. Plasmonics, or surface plasmon based photonics, focus on how to exploit the optical property of metals with abundant free electrons and hence negative permittivity. The oscillation of free electrons, when properly driven by electromagnetic waves, would form plasmon-polaritons in the vicinity of metal surfaces and potentially result in extreme light confinement. The objective of this article is to review the progress of subwavelength or deep subwavelength plasmonic waveguides, and fabrication techniques of plasmonic materials. 1. Introduction Plasmonics, a name coined for surface-plasmon-(SP-) related photonics, has inspired booming research interests since late 1990s. Actually, the history of surface plasmon research dates back to the investigation of surface plasmon resonance (SPR) on metallic thin films [1], or even light scattering from nanoscale metallic particles as early as 1970s [2]. Research focus has then shifted to the integration of plasmonic components into subsystems for optical communications and information exchange, when many novel plasmonic devices have been developed for communications in recent years [3]. Accordingly, plasmonic waveguides, couplers, and modulators become the core topics of the new plasmonics era. Two factors have catalyzed and contributed to this transition. Firstly, along with the advanced numerical tools backed up by computational electromagnetics, powerful computers and computing clusters have been more affordable and accessible. More importantly, with the fast development of nano- and microfabrication technology, researchers have been empowered to fabricate complex structures and manipulate wide selection of materials. In this paper, we will review the development and progress of plasmonic waveguides, especially the applications of metal-insulator-metal waveguides, and various plasmonic materials based on their application spectrum and fabrication techniques. 2. Motivation Light has emerged as one of the most important carriers for large volume data, as well as a reliable and powerful aide for perception and manipulation of small particles. Compared to its classical form featured with bulky objects and diffraction-limited %U http://www.hindawi.com/journals/ijo/2012/258013/