%0 Journal Article %T AdjustmentModelandColoredNoiseReductionofContinuousObservationSystem %A ѦÊ÷Ç¿ %A ÑîԪϲ %J ²â»æÑ§±¨ %P 360-365 %D 2014 %X Theaffectioncausedbythecolorednoisesshouldbetakenintoaccounttotheadjustmentmodel.Asusefulsignals,thesecolorednoisesshouldbeaccuratelyidentifiedandextractedbyFourieranalysis.Acontinuousadjustmentmodelisintroducedwithrespecttothecolorednoises,andthenitcanbegeneralizedfromthefinitespacetotheinfinitespacesocalledasHilbertspace.Thisextensionistoprovideanewtechniquetoperformthecontinuousobservationalsystemdesign,Fourieranalysisaswellastheparameterestimation.ItshowsthattheGramer¡¯sdeterminantprovidesmaximizationcriteriainthesystemoptimizationdesignaswellasaruleindiagnosingtheadjustmentmodel.Relatedwiththedefinitionoftheintegral,theleastsquaressolutionofthecontinuousadjustmentmodelbecomesthelimitofthetraditionalleastsquaressolutioninfinitespace.Moreover,theinfluencecausedbythecolorednoisesissystematic,butitcanbeeliminatedorcompensatedbyoptimallydesigningtheobservationalsystem. %K adjustment')" %K href="#">vertical-align %K middle">adjustment %K continuous %K observation %K least %K squares %K colored %K noise %K Hilbert %K space %K Abstract %K The %K affection %K caused %K by %K the %K colored %K noises %K should %K be %K taken %K into %K account %K to %K the %K adjustment %K model. %K As %K useful %K signals %K these %K colored %K noises %K should %K be %K accurately %K identified %K and %K extracted %K by %K Fourier %K analysis. %K A %K continuous %K adjustment %K model %K is %K introduced %K with %K respect %K to %K the %K colored %K noises %K and %K then %K it %K can %K be %K generalized %K from %K the %K finite %K space %K to %K the %K infinite %K space %K so %K called %K as %K Hilbert %K space. %K This %K extension %K is %K to %K provide %K a %K new %K technique %K to %K perform %K the %K continuous %K observational %K system %K design %K Fourier %K analysis %K as %K well %K as %K the %K parameter %K estimation. %K It %K shows %K that %K the %K Gramer¡¯s %K determinant %K provides %K maximization %K criteria %K in %K the %K system %K optimization %K design %K as %K well %K as %K a %K rule %K in %K diagnosing %K the %K adjustment %K model. %K Related %K with %K the %K definition %K of %K the %K integral %K the %K least %K squares %K solution %K of %K the %K continuous %K adjustment %K model %K becomes %K the %K limit %K of %K the %K traditional %K least %K squares %K solution %K in %K finite %K space. %K Moreover %K the %K influence %K caused %K by %K the %K colored %K noises %K is %K systematic %K but %K it %K can %K be %K eliminated %K or %K compensated %K by %K optimally %K designing %K the %K observational %K system. %U http://xb.sinomaps.com:8081/Jwk_chxb/CN/abstract/abstract6415.shtml