%0 Journal Article %T The Fleming-Viot limit of an interacting spatial population with fast density regulation %A Ankit Gupta %J Quantitative Biology %D 2012 %I arXiv %R 10.1214/EJP.v17-1964 %X We consider population models in which the individuals reproduce, die and also migrate in space. The population size scales according to some parameter $N$, which can have different interpretations depending on the context. Each individual is assigned a mass of 1/N and the total mass in the system is called \emph{population density}. The dynamics has an intrinsic density regulation mechanism that drives the population density towards an equilibrium. We show that under a timescale separation between the \emph{slow} migration mechanism and the \emph{fast} density regulation mechanism, the population dynamics converges to a Fleming-Viot process as the scaling parameter $N$ approaches $\infty$. We first prove this result for a basic model in which the birth and death rates can only depend on the population density. In this case we obtain a \emph{neutral} Fleming-Viot process. We then extend this model by including position-dependence in the birth and death rates, as well as, offspring dispersal and immigration mechanisms. We show how these extensions add \emph{mutation} and \emph{selection} to the limiting Fleming-Viot process. All the results are proved in a multi-type setting, where there are $q$ types of individuals interacting with each other. We illustrate the usefulness of our convergence result by discussing applications in population genetics and cell biology. %U http://arxiv.org/abs/1204.2909v2