%0 Journal Article %T When Can You Fold a Map? %A Esther M. Arkin %A Michael A. Bender %A Erik D. Demaine %A Martin L. Demaine %A Joseph S. B. Mitchell %A Saurabh Sethia %A Steven S. Skiena %J Computer Science %D 2000 %I arXiv %X We explore the following problem: given a collection of creases on a piece of paper, each assigned a folding direction of mountain or valley, is there a flat folding by a sequence of simple folds? There are several models of simple folds; the simplest one-layer simple fold rotates a portion of paper about a crease in the paper by +-180 degrees. We first consider the analogous questions in one dimension lower -- bending a segment into a flat object -- which lead to interesting problems on strings. We develop efficient algorithms for the recognition of simply foldable 1D crease patterns, and reconstruction of a sequence of simple folds. Indeed, we prove that a 1D crease pattern is flat-foldable by any means precisely if it is by a sequence of one-layer simple folds. Next we explore simple foldability in two dimensions, and find a surprising contrast: ``map'' folding and variants are polynomial, but slight generalizations are NP-complete. Specifically, we develop a linear-time algorithm for deciding foldability of an orthogonal crease pattern on a rectangular piece of paper, and prove that it is (weakly) NP-complete to decide foldability of (1) an orthogonal crease pattern on a orthogonal piece of paper, (2) a crease pattern of axis-parallel and diagonal (45-degree) creases on a square piece of paper, and (3) crease patterns without a mountain/valley assignment. %U http://arxiv.org/abs/cs/0011026v3