%0 Journal Article %T Skip-Thought Vectors %A Ryan Kiros %A Yukun Zhu %A Ruslan Salakhutdinov %A Richard S. Zemel %A Antonio Torralba %A Raquel Urtasun %A Sanja Fidler %J Computer Science %D 2015 %I arXiv %X We describe an approach for unsupervised learning of a generic, distributed sentence encoder. Using the continuity of text from books, we train an encoder-decoder model that tries to reconstruct the surrounding sentences of an encoded passage. Sentences that share semantic and syntactic properties are thus mapped to similar vector representations. We next introduce a simple vocabulary expansion method to encode words that were not seen as part of training, allowing us to expand our vocabulary to a million words. After training our model, we extract and evaluate our vectors with linear models on 8 tasks: semantic relatedness, paraphrase detection, image-sentence ranking, question-type classification and 4 benchmark sentiment and subjectivity datasets. The end result is an off-the-shelf encoder that can produce highly generic sentence representations that are robust and perform well in practice. We will make our encoder publicly available. %U http://arxiv.org/abs/1506.06726v1