%0 Journal Article %T Parameterized Complexity of Bandwidth on Trees %A Markus Sortland Dregi %A Daniel Lokshtanov %J Computer Science %D 2014 %I arXiv %X The bandwidth of a $n$-vertex graph $G$ is the smallest integer $b$ such that there exists a bijective function $f : V(G) \rightarrow \{1,...,n\}$, called a layout of $G$, such that for every edge $uv \in E(G)$, $|f(u) - f(v)| \leq b$. In the {\sc Bandwidth} problem we are given as input a graph $G$ and integer $b$, and asked whether the bandwidth of $G$ is at most $b$. We present two results concerning the parameterized complexity of the {\sc Bandwidth} problem on trees. First we show that an algorithm for {\sc Bandwidth} with running time $f(b)n^{o(b)}$ would violate the Exponential Time Hypothesis, even if the input graphs are restricted to be trees of pathwidth at most two. Our lower bound shows that the classical $2^{O(b)}n^{b+1}$ time algorithm by Saxe [SIAM Journal on Algebraic and Discrete Methods, 1980] is essentially optimal. Our second result is a polynomial time algorithm that given a tree $T$ and integer $b$, either correctly concludes that the bandwidth of $T$ is more than $b$ or finds a layout of $T$ of bandwidth at most $b^{O(b)}$. This is the first parameterized approximation algorithm for the bandwidth of trees. %U http://arxiv.org/abs/1404.7810v1