%0 Journal Article %T Pebbles and Branching Programs for Tree Evaluation %A Stephen Cook %A Pierre McKenzie %A Dustin Wehr %A Mark Braverman %A Rahul Santhanam %J Computer Science %D 2010 %I arXiv %X We introduce the Tree Evaluation Problem, show that it is in logDCFL (and hence in P), and study its branching program complexity in the hope of eventually proving a superlogarithmic space lower bound. The input to the problem is a rooted, balanced d-ary tree of height h, whose internal nodes are labeled with d-ary functions on [k] = {1,...,k}, and whose leaves are labeled with elements of [k]. Each node obtains a value in [k] equal to its d-ary function applied to the values of its d children. The output is the value of the root. We show that the standard black pebbling algorithm applied to the binary tree of height h yields a deterministic k-way branching program with Theta(k^h) states solving this problem, and we prove that this upper bound is tight for h=2 and h=3. We introduce a simple semantic restriction called "thrifty" on k-way branching programs solving tree evaluation problems and show that the same state bound of Theta(k^h) is tight (up to a constant factor) for all h >= 2 for deterministic thrifty programs. We introduce fractional pebbling for trees and show that this yields nondeterministic thrifty programs with Theta(k^{h/2+1}) states solving the Boolean problem "determine whether the root has value 1". We prove that this bound is tight for h=2,3,4, and tight for unrestricted nondeterministic k-way branching programs for h=2,3. %U http://arxiv.org/abs/1005.2642v1