%0 Journal Article %T Graph Frequency Analysis of Brain Signals %A Weiyu Huang %A Leah Goldsberry %A Nicholas F. Wymbs %A Scott T. Grafton %A Danielle S. Bassett %A Alejandro Ribeiro %J Computer Science %D 2015 %I arXiv %X This paper presents methods to analyze functional brain networks and signals from graph spectral perspectives. The notion of frequency and filters traditionally defined for signals supported on regular domains such as discrete time and image grids has been recently generalized to irregular graph domains, and defines brain graph frequency associated with different levels of spatial smoothness across the brain regions. Brain network frequency also enables the decomposition of brain signals into pieces corresponding to smooth or vibrant variations. We relate graph frequency with principal component analysis when the networks of interest denote functional connectivity. The methods are utilized to analyze brain networks and signals as subjects master a simple motor skill. We observe that brain signals corresponding to different graph frequencies exhibit different levels of adaptability throughout learning. Further, we notice the strong association between graph spectral property of brain networks with the level of exposure to tasks performed, and recognize the most contributing and important frequency signatures at different task familiarity. %U http://arxiv.org/abs/1512.00037v1