%0 Journal Article %T The Role of Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography in Evaluating the Response to Treatment in Patients with Multiple Myeloma %A Carmelo Caldarella %A Giorgio Treglia %A Maria Antonietta Isgr¨° %A Ivan Treglia %A Alessandro Giordano %J International Journal of Molecular Imaging %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/175803 %X Background and Aim. Fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) is well recognized as a powerful diagnostic tool in the initial staging of patients with multiple myeloma (MM). The aim of this paper is to perform a systematic review about the usefulness of FDG-PET or PET/CT in evaluating the response to treatment in patients with MM. Methods. The scientific literature about the role of FDG-PET or PET/CT in evaluating the response to treatment in patients affected by MM was systematically reviewed. Results. Ten studies about the role of FDG-PET or PET/CT in evaluating treatment response in MM were retrieved and discussed. Conclusions. FDG-PET or PET/CT seems to be helpful in assessing the response to treatment in patients with MM and in the evaluation of possible sites of recurrent or progressive disease. 1. Introduction Multiple myeloma (MM) is the second most common haematological malignancy. It accounts for <1% of all cancers and primarily affects older people, with a median age at diagnosis of about 65¨C70 years. The characteristic haematological alteration is monoclonal proliferation of plasma cells in bone marrow; in most cases, excessive production of monoclonal immunoglobulins can be observed and detected in serum and/or urine. Bone is involved in more than 80% of patients at the time of diagnosis, in most cases with evidence of osteolytic lesions; resulting pain, spinal cord compression, and hypercalcemia have a major impact on life quality [1¨C3]. The extension of bone marrow and extramedullary involvement should be carefully evaluated to establish prognosis and clinical management [4]. Currently, whole-body X-ray scan is the most commonly used diagnostic tool in the evaluation of bone involvement in patients with MM, due to the rare occurrence of extraosseous sites. Additional information could be provided by computed tomography (CT) and magnetic resonance imaging (MRI), while conventional bone scintigraphy is affected by low sensitivity because of inadequate osteoblastic activity in MM lesions [1¨C3]. Molecular imaging modalities such as Fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) or FDG-PET/CT have emerged in the recent years as useful methods in the initial staging and treatment planning of patients affected by MM. FDG is a glucose analogue which is taken up by human cells by means transmembrane glucose transporters (GLUTs) and then phosphorylated to FDG-6-phosphate. Differently from normal glucose, it is not further metabolized to pyruvate and accumulates into the cytosol. The amount of %U http://www.hindawi.com/journals/ijmi/2012/175803/