%0 Journal Article %T The Hilbert function of a maximal Cohen-Macaulay module Part II %A Tony J. Puthenpurakal %J Mathematics %D 2011 %I arXiv %X Let $(A,\m)$ be a strict complete intersection of positive dimension and let $M$ be a maximal \CM \ $A$-module with bounded betti-numbers. We prove that the Hilbert function of $M$ is non-decreasing. We also prove an analogous statement for complete intersections of codimension two. %U http://arxiv.org/abs/1109.5326v1