%0 Journal Article %T Critical Point and Percolation Probability in a Long Range Site Percolation Model on $\Z^d$ %A Bernardo N. B. de Lima %A R¨Śmy Sanchis %A Roger W. C. Silva %J Mathematics %D 2011 %I arXiv %X Consider an independent site percolation model with parameter $p \in (0,1)$ on $\Z^d,\ d\geq 2$ where there are only nearest neighbor bonds and long range bonds of length $k$ parallel to each coordinate axis. We show that the percolation threshold of such model converges to $p_c(\Z^{2d})$ when $k$ goes to infinity, the percolation threshold for ordinary (nearest neighbour) percolation on $\Z^{2d}$. We also generalize this result for models whose long range bonds have several lengths. %U http://arxiv.org/abs/1105.4558v1