%0 Journal Article %T A Semidefinite Approach for Truncated K-Moment Problems %A J. William Helton %A Jiawang Nie %J Mathematics %D 2011 %I arXiv %X A truncated moment sequence (tms) of degree d is a vector indexed by monomials whose degree is at most d. Let K be a semialgebraic set.The truncated K-moment problem (TKMP) is: when does a tms y admit a positive Borel measure supported? This paper proposes a semidefinite programming (SDP) approach for solving TKMP. When K is compact, we get the following results: whether a tms y of degree d admits a K-measure or notcan be checked via solving a sequence of SDP problems; when y admits no K-measure, a certificate will be given; when y admits a K-measure, a representing measure for y would be obtained from solving the SDP under some necessary and some sufficient conditions. Moreover, we also propose a practical SDP method for finding flat extensions, which in our numerical experiments always finds a finitely atomic representing measure for a tms when it admits one. %U http://arxiv.org/abs/1105.0410v2