%0 Journal Article %T Neumann eigenvalue sums on triangles are (mostly) minimal for equilaterals %A R. S. Laugesen %A Z. C. Pan %A S. S. Son %J Mathematics %D 2011 %I arXiv %X We prove that among all triangles of given diameter, the equilateral triangle minimizes the sum of the first $n$ eigenvalues of the Neumann Laplacian, when $n \geq 3$. The result fails for $n=2$, because the second eigenvalue is known to be minimal for the degenerate acute isosceles triangle (rather than for the equilateral) while the first eigenvalue is 0 for every triangle. We show the third eigenvalue is minimal for the equilateral triangle. %U http://arxiv.org/abs/1102.0071v1