%0 Journal Article %T Noncommutative geometry based on commutator expansions %A Mikhail Kapranov %J Mathematics %D 1998 %I arXiv %X We develop an approach to noncommutative algebraic geometry ``in the perturbative regime" around ordinary commutative geometry. Let R be a noncommutative algebra and A=R/[R,R] its commutativization. We describe what should be the formal neighborhood of M=Spec(A) in the (nonexistent) space Spec(R). This is a ringed space (M,O) where O is a certain sheaf of noncommutative rings on M. Such ringed spaces can be glued together to form more global objects called NC-schemes. We are especially interested in NC-manifolds, NC-schemes for which the completion of O at every point of M is isomorphic to the algebra of noncommutative power series (completion of the free associative algebra). An explicit description of the simplest NC-manifold, the affine space, is given by using the Feynman-Maslov calculus of ordered operators. We show that many familiar algebraic varieties can be naturally enlarged to NC-manifolds. Among these are all the classical flag varieties and all the smooth moduli spaces of vector bundles. %U http://arxiv.org/abs/math/9802041v1