%0 Journal Article %T Irreducibility of \bar{M}_{0,n}(G/P,¦Â) %A Jesper Funch Thomsen %J Mathematics %D 1997 %I arXiv %X Let G be a linear algebraic group, P be a parabolic subgroup of G and \beta be a cycle of dimension 1 in the Chow group of the quotient G/P. Using geometric arguments and Borel's fixed point theorem, we prove that the moduli space \bar{M}_{0,n}(G/P, \beta) of n-pointed genus 0 stable maps representing \beta is irreducible. %U http://arxiv.org/abs/alg-geom/9707005v1