%0 Journal Article %T Geometry of Moduli Spaces of Flat Bundles on Punctured Surfaces %A Philip A. Foth %J Mathematics %D 1997 %I arXiv %X We consider the moduli spaces of flat $SL(n, C)$-bundles on Riemann surfaces with one puncture when we fix the conjugacy class ${\cal C}$ of the monodromy transformation around the puncture. We show that under a certain condition on the class ${\cal C}$ (namely the product of $k1$ and $A_1A_2\cdots A_pA_1^{-1}A_2^{-1}\cdots A_p^{-1}$ belongs to a class which satisfies property P then the $p$ -tuple $(A_1, ..., A_p)$ algebraically generates the whole group $G$. %U http://arxiv.org/abs/alg-geom/9703004v1