%0 Journal Article %T Nonstandard q-deformation of the universal enveloping algebra $U'({\rm so}_n)$ %A A. U. Klimyk %J Mathematics %D 1999 %I arXiv %X We describe properties of the nonstandard q-deformation $U'_q({\rm so}_n)$ of the universal enveloping algebra $U({\rm so}_n)$ of the Lie algebra ${\rm so}_n$ which does not coincide with the Drinfeld--Jimbo quantum algebra $U_q({\rm so}_n)$. Irreducible representations of this algebras for q a root of unity q^p=1 are given. These representations act on p^N-dimensional linear space (where N is a number of positive roots of the Lie algebra ${\rm so}_n$) and are given by $r={\rm dim} {\rm so}_n$ complex parameters. %U http://arxiv.org/abs/math/9911114v1