%0 Journal Article %T Existence and multiplicity results on a class of quasilinear elliptic problems with cylindrical singularities involving multiple critical exponents %A Ronaldo B. Assun£¿£¿o %A Weler W. dos Santos %A Ol¨ªmpio H. Miyagaki %J Mathematics %D 2015 %I arXiv %X This work deals with the existence of at least two positive solutions for the class of quasilinear elliptic equations with cylindrical singularities and multiple critical nonlinearities that can be written in the form \begin{align*} -\operatorname{div}\left[\frac{|\nabla u|^{p-2}}{|y|^{ap}}\nabla u\right] -\mu\,\frac{u^{p-1}}{|y|^{p(a+1)}} = h\,\frac{u^{p^*(a,b)-1}}{|y|^{bp^*(a,b)}} +\lambda g\,\frac{u^{q-1}}{|y|^{cp^*(a,c)}}, \qquad (x,y) \in \mathbb{R}^{N-k}\times\mathbb{R}^k. \end{align*} We consider $N \geqslant 3$, $\lambda >0$, $p < k \leqslant N$, $1