%0 Journal Article %T On primitive weird numbers of the form $2^k p q$ %A Douglas E. Iannucci %J Mathematics %D 2015 %I arXiv %X We say a natural number~$n$ is abundant if $\sigma(n)>2n$, where $\sigma(n)$ denotes the sum of the divisors of~$n$. The aliquot parts of~$n$ are those divisors less than~$n$, and we say that an abundant number~$n$ is pseudoperfect if there is some subset of the aliquot parts of~$n$ which sum to~$n$. We say~$n$ is weird if~$n$ is abundant but not pseudoperfect. We call a weird number~$n$ primitive if none of its aliquot parts are weird. We find all primitive weird numbers of the form $2^kpq$ ($p