%0 Journal Article %T The existence of a path-factor without small odd paths %A Yoshimi Egawa %A Michitaka Furuya %J Mathematics %D 2015 %I arXiv %X In this paper, we show that if a graph $G$ satisfies $c_{1}(G-X)+\frac{2}{3}c_{3}(G-X)\leq \frac{4}{3}|X|+\frac{1}{3}$ for all $X\subseteq V(G)$, then $G$ has a $\{P_{2},P_{5}\}$-factor, where $c_{i}(G-X)$ is the number of components $C$ of $G-X$ with $|V(C)|=i$. %U http://arxiv.org/abs/1503.08556v1