%0 Journal Article %T Limiting Distributions of Scaled Eigensections in a GIT-Setting %A Daniel Berger %J Mathematics %D 2015 %I arXiv %X Let $\mathrm{\mathbf{L}\rightarrow \mathbf{X}}$ be a base point free $\mathrm{\mathbb{T}=T^{\mathbb{C}}}$-linearized hermitian line bundle over a compact variety $\mathrm{\mathbf{X}}$ where $\mathrm{T=\left(S^{1}\right)^{m}}$ is a real torus. The main focus of this paper is to describe the asymptotic behavior of a certain class of sequences $\mathrm{\left(s_{n}\right)_{n}}$ of $\mathrm{\mathbb{T}}$-eigensections $\mathrm{s_{n}\in H^{0}\left(\mathbf{X},\mathbf{L}^{n}\right)}$ as $\mathrm{n\rightarrow \infty}$, introduced by Shiffman, Tate and Zelditch, and its connection to the geometry of the Hilbert quotient $\mathrm{\pi\!:\!\bf{X}^{ss}_{\xi}\rightarrow \mathbf{X}^{ss}_{\xi}/\!\!/\mathbb{T}}$ where $\mathrm{\xi\in \mathfrak{t}^{*}}$. %U http://arxiv.org/abs/1503.01550v1