%0 Journal Article %T Sur la capitulation des 2-classes d'id¨¦aux du corps Q(\sqrt{2p_1p_2}, i) %A Abdelmalek Azizi %A Abdelkader Zekhnini %A Mohammed Taous %J Mathematics %D 2015 %I arXiv %X Let $p_1$ and $p_2$ be two primes such that $p_1\equiv p_2\equiv1 \pmod4$ and at least two of the three elements $\{(\frac{2}{p_1}), (\frac{2}{p_2}), (\frac{p_1}{p_2})\}$ are equal to -1. Put $i=\sqrt{-1}$, $d=2p_1p_2$ and $k =Q(\sqrt{d}, i)$. Let $k_2^{(1)}$ be the Hilbert 2-class field of $k$ and $k^{(*)}=Q(\sqrt{p_1},\sqrt{p_2},\sqrt 2, i)$ be its genus field. Let $C_{k,2}$ denote the 2-part of the class group of $k$. The unramified abelian extensions of $k$ are $K_1=k(\sqrt{p_1})$, $K_2=k(\sqrt{p_2})$, $K_3=k(\sqrt{2})$ and $k^{(*)}$. Our goal is to study the capitulation problem of the 2-classes of $k$ in these four extensions. %U http://arxiv.org/abs/1503.05132v1