%0 Journal Article %T Homotopic Hopf-Galois extensions revisited %A Alexander Berglund %A Kathryn Hess %J Mathematics %D 2014 %I arXiv %X In this article we revisit the theory of homotopic Hopf-Galois extensions introduced in arXiv:0902.3393v2 [math.AT], in light of the homotopical Morita theory of comodules established in arXiv:1411.6517 [math.AT]. We generalize the theory to a relative framework, which we believe is new even in the classical context and which is essential for treating the Hopf-Galois correspondence in forthcoming work of the second author and Karpova. We study in detail homotopic Hopf-Galois extensions of finite-type differential graded algebras over a field, for which we establish a descent-type characterization analogous to the one Rognes provided in the context of ring spectra. An interesting feature in the differential graded setting is the close relationship between homotopic Hopf-Galois theory and Koszul duality theory. %U http://arxiv.org/abs/1412.7072v1