%0 Journal Article %T Liouville-type theorems for polyharmonic H¨Śnon-Lane-Emden system %A Quoc Hung Phan %J Mathematics %D 2014 %I arXiv %X We study Liouville-type theorem for polyharmonic H\'enon-Lane-Emden system $(-\Delta)^mu=|x|^av^p,\; (-\Delta)^mv=|x|^bu^q$ when $m,p,q\geq 1, pq\ne 1$, and $a,b\geq 0$. It is a natural conjecture that the nonexistence of positive solutions should be true if and only if $(N+a)/(p+1)+$ $(N+b)/(q+1)>N-2m$. It is shown by Fazly [6] that the conjecture holds for radial solutions in all dimensions and for classical solutions in dimension $N\leq 2m+1$. We here give some partial results in dimension $N\geq 2m+2$. %U http://arxiv.org/abs/1405.4584v2