%0 Journal Article %T A dendrite generated from {0,1}^¦«, Card¦«\succ \aleph %A Akihiko Kitada %A Tomoyuki Yamamoto %A Shousuke Ohmori %J Mathematics %D 2014 %I arXiv %X The existence of a decomposition space with a dendritic structure of a topological space $(\{0,1\}^\Lambda ,\tau_{0}^\Lambda )$ is discussed. Here, $\Lambda $ is any set with the cardinal number $\succ \aleph , \{0,1\}^{\Lambda }=\{\varphi :\Lambda \rightarrow \{0,1\}\}, \tau_0$ is the discrete topology for $\{0,1\}$ and the topology $\tau_0^{\Lambda }$ for $\{0,1\}^\Lambda $ is the topology with the base $\beta =\{~;~G_{\lambda_1}\in \tau_0,\dots,G_{\lambda _n}\in \tau_0, \{\lambda _1,\dots,\lambda _n\}\subset \Lambda ,n\in {\bf N}\}$ where the notation $$ concerning the subset $E_{\lambda _i}, i=1,\dots,n$ of $\{0,1\}$ denotes the set $\{\varphi :\Lambda \rightarrow \{0,1\}~;~\varphi (\lambda _1)\in E_{\lambda _1},\dots,\varphi (\lambda _n)\in E_{\lambda _n}, \varphi (\lambda )\in \{0,1\}, \lambda \in \Lambda -\{\lambda _1,\dots,\lambda _n\}\}$. %U http://arxiv.org/abs/1402.7309v1