%0 Journal Article %T On singular value inequalities for matrix means %A R. Dumitru %A R. Levanger %A B. Visinescu %J Mathematics %D 2013 %I arXiv %X For positive semidefinite $n\times n$ matrices $A$ and $B$, the singular value inequality $(2+t)s_{j}(A^{r}B^{2-r}+A^{2-r}B^{r})\leq 2s_{j}(A^{2}+tAB+B^{2})$ is shown to hold for $r=\frac{1}{2}, 1, \frac{3}{2}$ and all $-2