%0 Journal Article %T Less than one implies zero %A Felix Schwenninger %A Hans Zwart %J Mathematics %D 2013 %I arXiv %X In this paper we show that from the estimate $\sup_{t \geq 0}\|C(t) - \cos(at)I\| <1$ we can conclude that $C(t)$ equals $\cos(at) I$. Here $\left(C(t)\right)_{t \geq 0}$ is a strongly continuous cosine family on a Banach space. %U http://arxiv.org/abs/1310.6202v2