%0 Journal Article %T A note on Gorenstein monomial curves %A Philippe Gimenez %A Hema Srinivasan %J Mathematics %D 2013 %I arXiv %X Let $k$ be an arbitrary field. In this note, we show that if a sequence of relatively prime positive integers ${\bf a}=(a_1,a_2,a_3,a_4)$ defines a Gorenstein non complete intersection monomial curve ${\mathcal C}({\bf a})$ in ${\mathbb A}_k^4$, then there exist two vectors ${\bf u}$ and ${\bf v}$ such that ${\mathcal C}({\bf a}+t{\bf u})$ and ${\mathcal C}({\bf a}+t{\bf v})$ are also Gorenstein non complete intersection affine monomial curves for almost all $t\geq 0$. %U http://arxiv.org/abs/1310.7779v2