%0 Journal Article %T Centrally symmetric polytopes with many faces %A Alexander Barvinok %A Seung Jin Lee %A Isabella Novik %J Mathematics %D 2011 %I arXiv %X We present explicit constructions of centrally symmetric polytopes with many faces: first, we construct a d-dimensional centrally symmetric polytope P with about (1.316)^d vertices such that every pair of non-antipodal vertices of P spans an edge of P, second, for an integer k>1, we construct a d-dimensional centrally symmetric polytope P of an arbitrarily high dimension d and with an arbitrarily large number N of vertices such that for some 0 < delta_k < 1 at least (1-delta_k^d) {N choose k} k-subsets of the set of vertices span faces of P, and third, for an integer k>1 and a>0, we construct a centrally symmetric polytope Q with an arbitrary large number N of vertices and of dimension d=k^{1+o(1)} such that least (1 - k^{-a}){N choose k} k-subsets of the set of vertices span faces of Q. %U http://arxiv.org/abs/1106.0449v3