%0 Journal Article %T Gromov-Witten invariants of $\bp^1$ and Eynard-Orantin invariants %A Paul Norbury %A Nick Scott %J Mathematics %D 2011 %I arXiv %R 10.2140/gt.2014.18.1865 %X We prove that stationary Gromov-Witten invariants of $\bp^1$ arise as the Eynard-Orantin invariants of the spectral curve $x=z+1/z$, $y=\ln{z}$. As an application we show that tautological intersection numbers on the moduli space of curves arise in the asymptotics of large degree Gromov-Witten invariants of $\bp^1$. %U http://arxiv.org/abs/1106.1337v2